Fundamentality of a cubic unit $u$ for $\mathbb {Z}[u]$
نویسندگان
چکیده
منابع مشابه
Fundamentality of a cubic unit u for ℤ[u]
Consider a cubic unit u of positive discriminant. We present a computational proof of the fact that u is a fundamental unit of the order Z[u] in most cases and determine the exceptions. This extends a similar (but restrictive) result due to E. Thomas. Introduction Let f(X) := X + aX + bX ± 1 ∈ Z[X] be irreducible in Z[X] and with three (distinct) real roots. We think of the order R := Z[u], obt...
متن کامل$(1-2u^k)$-constacyclic codes over $\mathbb{F}_p+u\mathbb{F}_p+u^2\mathbb{F}_+u^{3}\mathbb{F}_{p}+\dots+u^{k}\mathbb{F}_{p}$
Let $\mathbb{F}_p$ be a finite field and $u$ be an indeterminate. This article studies $(1-2u^k)$-constacyclic codes over the ring $\mathcal{R}=\mathbb{F}_p+u\mathbb{F}_p+u^2\mathbb{F}_p+u^{3}\mathbb{F}_{p}+\cdots+u^{k}\mathbb{F}_{p}$ where $u^{k+1}=u$. We illustrate the generator polynomials and investigate the structural properties of these codes via decomposition theorem.
متن کامل$\mathbb{Z}_p\mathbb{Z}_p[u]$-additive codes
Abstract: In this paper, we study ZpZp[u]-additive codes, where p is prime and u 2 = 0. In particular, we determine a Gray map from ZpZp[u] to Z α+2β p and study generator and parity check matrices for these codes. We prove that a Gray map Φ is a distance preserving map from (ZpZp[u],Gray distance) to (Z α+2β p ,Hamming distance), it is a weight preserving map as well. Furthermore we study the ...
متن کاملCyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$
In this paper, we have studied cyclic codes over the ring R = Z4 +uZ4, u = 0. We have considered cyclic codes of odd lengths. A sufficient condition for a cyclic code over R to be a Z4-free module is presented. We have provided the general form of the generators of a cyclic code over R and determined a formula for the ranks of such codes. In this paper we have mainly focused on principally gene...
متن کاملOn Quantum Codes Obtained From Cyclic Codes Over $\mathbb{F}_2+u\mathbb{F}_2+u^2\mathbb{F}_2$
The aim of this paper is to develop the theory for constructing DNA cyclic codes of odd length over R = Z4[u]/〈u 2 − 1〉. Firstly, we relate DNA pairs with a special 16 element of ring R. Cyclic codes of odd length over R satisfy the reverse constraint and the reverse-complement constraint are discussed in this paper. We also study the GC-content of these codes and their deletion distance. The p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 2010
ISSN: 0025-5718,1088-6842
DOI: 10.1090/s0025-5718-2010-02383-x